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One of the practical difficulties precluding the generalized development of nonadditive, polarizable models
for statistical simulations is rooted in the costly estimation of accurate induction energies, from which distributed
polarizabilities can be derived. From a finite perturbation (FP) perspective, mapping the induction energy
over a grid of points implies as many distinct quantum chemical calculations of the molecule interacting with
a polarizing charge as the total number of points. Here, two alternative routes for computing accurate induction
energies in a time-bound fashion are explored. The first one is based upon second-order perturbation theory
and only involves a single quantum chemical calculation at the Hartree-Fock level of approximation to map
the induction energy. The second one, less straightforward in its implementation, relies on a topological
partitioning of the response charge density, also evaluated from a single quantum chemical calculation, yet
at virtually any level of sophistication. Critical comparison with reference FP computations reveals that only
appropriate scaling of the perturbative (PT) induction energies can warrant a faithful description of polarization
phenomena. In the case of neutral molecules, a reasonable reproduction of molecular dipole polarizabilities
is achieved when use is made of a simple scaling function that solely depends on the distance separating the
points of the grid from the center of mass of the molecule. For anions, the marked anisotropy in the deviation
of the PT induction energies from the target FP ones makes the definition of such a general scaling function
virtually impossible. In sharp contrast, the approach based upon the topological partitioning of the response
charge density does not require any adjustment or scaling, and, thus, constitutes a more robust and rigorous
strategy for the computation of induction energies. Examination of distinct protocols for mapping the induction
energy emphasizes the necessity to sample the space around the molecule far enough from the nuclei to
reproduce molecular dipole polarizabilities accurately. Compared to the spatial extent of the grid, the density
of points appears to be of lesser importance.

1. Introduction

The assumption that induction effects can be accounted for
in an average fashion by means of a simple, appropriate
parameterization is at the origin of the durable success of
pairwise, additive potential energy functions for cost-effective
statistical simulations of liquids. An important ingredient in the
development of such nonpolarizable, effective force fields
consists of increasing artificially the polarity of the participating
molecules to compensate for missing, through-space inter-
molecular induction phenomena.1 A popular approach for
implicit polarization is based upon the observation that,
compared to the experimental gas-phase quantities, molecular
dipole moments computed at the Hartree-Fock (HF) level of
theory, using a split-valence 6-31G(d) basis set, are systemati-
cally exaggerated.2 In a number of instances where explicit

nonadditivity effects can be neglected, intermolecular potentials
parameterized with net atomic charges derived from the HF/6-
31G(d) electrostatic potential provide a reasonable description
of the properties of the liquid,3 although explicit, mutual
polarization of the constituent molecules and their environment
is clearly absent. The advantage of representing the system using
pairwise, additive potential energy functions lies in the cost-
effectiveness of the statistical simulation, avoiding the compu-
tationally demanding estimation of induced moments at the
expense of sampling of the phase space. Such an implicit
polarization approach is, however, not equivalent to a rigorous,
atomic-level description of the molecular response to a non-
uniform, external electric field, thus constituting the inherent
limitation of the approach. This is particularly relevant in
statistical simulations of ionic species or highly polarizing
systems interacting with polarizable ones. Furthermore, explicit
polarization has proven to be pivotal in those cases where
intramolecular induction effects are sizable.4,5

The massive increase of computational resources witnessed
in recent years, pushing back the limitations of statistical
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simulations, has allowed molecular assemblies of appreciable
complexity to be tackled over realistic time-scales, using
sophisticated potential energy functions. The generalized avail-
ability of such resources has inevitably contributed to the recent
interest of nonadditive force fields, opening the way to the
development of alternative approaches for modeling induction
effects in chemical systems. To a large extent, the success of
molecular simulations relying on polarizable potential energy
functions is closely coupled to the ability of the modeler to
design such functions. Arguably, the most popular scheme for
constructing models of atomic polarizabilities is the one
proposed by Applequist.6 In essence, his method is based on a
self-consistent determination of parameters characterizing the
atomic polarizability that see each other through screened
dipole-dipole interactions. Just like its refined version devised
by Thole,7 this heuristic approach implies a substantial com-
ponent of arbitrariness in the parameterization of the model. In
contrast, the partitioning scheme put forward by Stone,8-9

combining an earlier formulation of the susceptibility function
of the charge density10 with the distributed multipole analysis
(DMA) method,11 is clearly more rigorous. Rational models of
distributed polarizabilities are derived from high-quality quan-
tum mechanical (QM) calculations of the response of an isolated
molecule to an external perturbation, thereby providing one-
and two-center charge-charge, charge-dipole, dipole-dipole,
etc. parameters. A pivotal aspect of this approach concerns the
partitioning of the response charge density into atomic and
nonlocal contributions. Closely related, an alternative procedure
supplying reasonably transferable, distributed polarizabilities12

relies on a topological partitioning of the molecular space into
atomic regions, according to the theory of “atoms in molecules”
(AIM) devised by Bader.13 The derived polarizability parameters
have been shown to reproduce accurately, in a given region,
the induced moments due to a local electrostatic potential and
its successive derivatives experienced at another site. Inherently
nonlocal,8,9,13 the resulting models include a plethora of terms
that rapidly become cumbersome to handle, especially in the
context of statistical simulations. For the latter, the number of
polarizability components should be reduced significantly to
yield compact and tractable sets of parameters, limited to low-
order terms, e.g., charge flow and one-center dipole polariz-
abilities, capable of describing induction phenomena at a
minimal cost. As a result, the above methods are not necessarily
compatible with such requirements, and the quality of the
generated models strongly depends on their level of sophistica-
tion. For instance, limiting the description to atomic dipole
polarizabilities, accurate reproduction of molecular quantities
beyond the order of the dipole is hopeless.

Atomic point charges derived from the quantum mechanical
electrostatic potential computed on a grid of points around the
molecule14-16 are largely utilized for parameterizing the Cou-
lomb part of all-purpose force fields. In the spirit of this
approach, a number of schemes targeted at the construction of
models of distributed polarizabilities have been devised, based
on a least-squares fitting procedure to the induction energy.17-20

Their strength resides in the possibility to generate easily
compact and flexible sets of polarizability parameters at any
given order. Contrasting with the electrostatic potential, directly
available from the wave function, the induction energy is
somewhat more difficult to attain. In its most straightforward
formulation, referred to as finite perturbation (FP),19 it can be
estimated by considering the interaction of the molecule with a
nonpolarizable point charge. Whereas potential derived charges
imply a single QM calculation to map the entire space around

the molecule, discretized in the form of a grid ofNp points,
evaluating induction energies for the same grid via FP would
require Np distinct QM calculations, hence constituting the
computational bottleneck of the approach. Clearly, the signifi-
cant computational effort involved in the determination of
induction energies, including usually intramolecular electron
correlation and employing large basis sets to warrant an
appropriate reproduction of the molecular polarizabilities, limits
the applicability of FP to sufficiently small, prototypical systems.
In light of these conclusions, two alternatives were developed
concurrently, aimed at a faster estimation of induction energies
and relying essentially upon a single QM calculation- a sine
qua noncondition for the development of nonheuristic models
of distributed polarizabilities. The first scheme, based on second-
order perturbation theory, allows the generation of large grids
of induction energies derived from one QM calculation at the
HF level.21,22 In essence, it relies upon an uncoupled form of
the HF equations and provides only an approximation of the
exact induction energy. Using adequately chosen scaling factors,
this perturbative approach has been shown to yield induction
energies in good agreement with the FP quantities.22 The second,
more elaborate scheme consists of computing induction energies
from fully distributed models of polarizabilities obtained within
the framework of the AIM theory.12 The key feature of this
approach lies in its ability to map grids of induction energies
from a single QM calculation at a sophisticated level of
approximation, followed by the topological partitioning of the
electron density response into atomic regions.23

The main thrust of the present contribution is the search for
an optimal, cost-effective approach for constructing models of
distributed polarizabilities capable of describing accurately
nonadditive phenomena in statistical simulations. A particular
effort has been invested in the past decades in the optimization
of basis sets of reasonable size, adapted to the reproduction of
electric properties. Here, the molecular dipole polarizabilities
for a series of small, prototypical molecules have been computed
using the ELP,24 the Sadlej,25 and the Spackman26 basis sets. It
will be shown that the second probably constitutes the best
compromise in terms of precision and computational effort for
the evaluation of induction energies, and, hence, the develop-
ment of models of distributed polarizabilities. Next, the merits
and the limitations of two alternative approaches for calculating
induction energies, namely the method based on second-order
perturbation theory and that relying upon a topological partition-
ing of the response charge density, will be discussed. To analyze
quantitatively the accuracy of these approaches, the computed
induction energies of a series of molecules will be compared
with those obtained via FP methodology. An important aspect
in the derivation of distributed polarizabilities concerns the
design of the grid of points over which the induction energy is
mapped. The density of points, as well as the radial extent of
the grid will be analyzed by considering how they affect the
fitted polarizabilities. Last, models of distributed polarizabilities,
including charge flow and isotropic dipole polarizabilities, will
be built using the induction energies resulting from second-
order perturbation theory and the topological partitioning of the
response charge density. As a rigorous assessment of their
respective quality, the molecular polarizabilities regenerated
from these models will be compared with those obtained from
second-order Møller-Plesset (MP2) computations and those
determined experimentally.

2. Methods and Computational Details

2.1. Effects of Geometry and Basis Set.A critical issue in
the construction of models of distributed polarizabilities is the

11506 J. Phys. Chem. A, Vol. 105, No. 51, 2001 Chipot et al.



level at which the induction energy is computed to guarantee
an accurate regeneration of molecular polarizabilities. It has been
demonstrated that the faithful reproduction of these quantities
via QM calculations requires a high level of sophistication.27

In particular, to attain results in close agreement with the
available experimental data, the introduction of intramolecular
electron correlation, at least at the MP2 level of approximation,
and the use of large, flexible basis sets are mandatory. Recent
calculations of molecular polarizabilities employing the triple-
ú-like 6-311++G(2d,2p) basis set, have revealed that the latter
was far from optimal for that purpose, always providing
underestimated quantities.23 Considerable effort has been de-
voted in recent years to the development of alternative basis
sets aimed at a quantitatively accurate description of electric
properties in molecular systems. In the present contribution, the
merits of the ELP,24 the Sadlej,25 and the Spackman26 basis sets
for the computation of molecular dipole polarizabilities will be
analyzed for H2O, NH3, H2S, HCN, C2H2, C2H4, C2H6, C6H6,
HCOH, HCOOH, and HCONH2. These QM calculations were
carried out at the MP2 level of approximation, utilizing two
distinct geometries for each molecule, one optimized with the
popular 6-31G(d) basis set, largely employed in the parameter-
ization of macromolecular force fields, and the other with the
6-311++G(2d,2p) basis set. All geometry optimizations and
estimations of molecular dipole polarizabities were carried out
using the Gaussian 98 suite of programs.28 In terms of
computational investment, the Spackman basis set proba-
bly constitutes the most attractive option for computing mo-
lecular polarizabilities, as it contains less than half as many
basis functions as the ELP basis set. For instance, in the
case of C6H6, the ELP, the Sadlej, and the Spackman
basis sets involve respectively 294, 198, and 126 basis func-
tions.

2.2. Alternative Schemes for Calculating Induction Ener-
gies.One of the fundamental issues that this article proposes to
address concerns the comparison of approximate methods for
the reliable computation of induction energies that can be
employed routinely in the development of models of distributed
polarizabilities. Within the reference method, referred to as FP,19

the molecule interacts with a nonpolarizable charge,qk, located
at r k on a grid ofNp points. The resulting induction energy can
be expressed as

Etotal,k is the energy of the molecule in the presence of the point
charge, requiring one individual QM calculation for each point
k of the grid;Np separate QM calculations are, therefore, needed
to map the full grid of induction energies.E0 is the energy of
the isolated molecule.V (r k) is the electrostatic potential atr k

generated by the isolated molecule.
The first alternative to the variational definition of the

induction energy highlighted by eq 1 stems from perturbation
theory. At the first order, the interaction energy of a molecule
interacting with the nonpolarizable point chargeqk located at
r k is given by the electrostatic potential

where|φµ〉 stands for a basis function,cµa is the coefficient of
atomic orbitalµ in the occupied molecular orbitala, andZA is

the nuclear charge of atomA located atRA. Induction phenom-
ena appear at the second order of perturbation theory:

Here,|ψ(1)〉 is the first-order corrected molecular wave function.
Equation 3 can be approximated within the framework of the
HF theory, employing the following expression:29

εa andεr correspond, respectively, to the energy of occupied,
a, and virtual,r, molecular orbitals of the isolated species. The
strength of this PT approach lies in its reduced computational
cost, as only one single QM calculation at the level is required
to estimate the density matrix.21,22It also constitutes its inherent
weakness. It should be clearly emphasized here that eq 4
provides only a coarse estimate of the actual induction energy.
Furthermore, because it is based upon an uncoupled form of
the HF equations, the PT scheme is limited to that level of
theory, and the resulting induction energies should be scaled to
compare with those derived from QM calculations, including
electron correlation effects.

The second, more elaborate method for estimating induction
energies equally relies upon a single QM calculation, carried
out either at a time-dependent HF (TDHF), coupled perturbed
HF (CPHF), or any higher level of theory. From this calculation,
a topological analysis of the response charge density is
performed to derive the components of distributed polarizabili-
ties,Rlκ,l′κ′

ss′ ) Rlκ,l′κ′(r s,r s′), at a given rankl, l′ e L, whereL is
the highest rank of the multipoles considered in what will be
referred to as the model of topologically partitioned electric
properties (TPEPs).12 From the knowledge of these TPEPs, the
induction energy resulting from the polarization of the molecule
by the nonpolarizable chargeqk can be determined readily:

Here,s and s′ denote two sites of the molecule, located atr s

and r s′, respectively.Tlκ,00
sk is a matrix element of the electro-

static tensor that corresponds to multipole componentlκ, giving
at points the electrostatic potential, or its successive derivatives,
created by point chargeqk.30

In the present contribution, the induction energies computed
using eqs 1, 4, and 5 will be compared for a variety of small,
prototypical species, viz., C2H6, C6H6, HCONH2, CH3OH,
HCOOH, and HCOO-. For each compound, a grid of points
consisting of seven concentrical van der Waals surfaces was
generated, over which the induction energy was mapped. Use
was made of a cutoff distance,rcut, of 7.5 Å, limiting the spatial
distribution of the points from any nucleus. Roughly speaking,
points were distributed between 3 and 9 Å from the center of
mass of each species, with a separation between the layers of
∆r ) 0.75 Å, making a total of 892, 1452, 962, 858, 878, and
790 points in the case of C2H6, C6H6, HCONH2, CH3OH,
HCOOH, and HCOO-, respectively. FP and TPEP induction
energies were determined at the MP2/Sadlej level of approxima-
tion, whereas PT ones resulted from single HF/Sadlej calcula-
tions. All geometries were optimized at the MP2/6-311G++-
(2d,2p) level. The TPEP expansion was truncated at the

Uind,k ) Etotal,k - E0 - qkV (r k) (1)

V (r k) ) ∑
A

ZA

|r k - RA|
- ∑

a

occ

∑
µ
∑

ν

cµa
/ cνa 〈φµ| 1

|r k - r ||φν〉
(2)

Uind,k ) 〈ψ(0)| qk

|r k - r ||ψ(1)〉 (3)

Uind,k = ∑
a

occ

∑
r

vir 1

εa - εr
[∑µ

∑
ν

cµa
/ cνr 〈φµ| qk

|r k - r ||φν〉]2

(4)

Uind,k ) -
1

2
qk

2∑
s,l,m

∑
s′,l′,m′

Tlκ,00
sk Rlκ,l′κ′

ss′ Tl′κ′,00
s′k (5)
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quadrupole and the hexadecapole polarizabilities for hydrogen
and heavy atoms, respectively.

What makes the direct use of TPEPs for constructing
nonadditive potential energy functions so cumbersome is the
extraordinarily large number of components, which rapidly
becomes difficult to handle when the size of the molecule
increases, e.g., from 5790 for C2H6 to 18690 for C6H6. From
the induction energy mapped over the grid ofNp points, it is,
however, possible to derive far simpler, compact models of
distributed polarizabilities. In practice, eq 5 will be employed
to obtain a reduced set ofNc componentsRlκ,l′κ′

ss′ capable of
reproducing the induction energies computed via eq 1, 4, or 5.
In the latter case, the target induction energies have been
calculated using the full TPEP model described in the previous
paragraph. One straightforward route to constructing compact
models of distributed polarizabilities consists of solving the
normal equations of the least-squares problem.19,31,32Another,
closely related way to build models of distributed polarizabilities
is provided by the statistical analysis of distributed polarizabili-
ties (SADP) method, which will be employed in what follows.20

This method, offering a pictorial representation of the fitting
procedure,33 is based on a random selection ofNc points among
theNp . Nc points of the grid and solving theNc × Nc system
of linear equations. Deriving a set of distributed polarizabilities
following this protocol is reached by constructing for each
component of the distributed polarizibilities a distribution
function, S(Rlκ,l′κ′

ss′ ), from which the most probable value is
inferred. An attractive feature of the SADP method is its ability
to pinpoint pathological cases, often illustrated by flat distri-
butions characterizing redundant or ill-defined components
Rlκ,l′κ′

ss′ .20,23

As a pertinent test of the intrinsic quality of the fitted models
of distributed polarizabilities, molecular polarizabilities,Rlκ,l′κ′,
were regenerated at originr0 by translating the distributed
components at sitess ands′, Rlκ,l′κ′

ss′ (r s,r s′), according to

where,Wlκ,l′κ′(r ) is a translation function defined by Stone.34,30

Grids of points were constructed with the program GRID
3.1.35 Evaluation of induction energies by means of the PT
scheme was done with the MOPETE suite of programs.36 QM
calculations prior to the topological analysis of the response
charge density were performed using MOLCAS.37 Determina-
tion of the TPEPs was carried out using the FOURIER
program.38

2.3. Effects of the Grid.A critical issue not discussed hitherto
concerns the definition of the grid over which the induction
energy is mapped. For the most part, the influence of its spatial
extent and the separation of its constituent points on the derived
distributed polarizabilities remains unclear. Careful examination
of the grid in the case of point charges fitted to the electrostatic
potential led to the conclusion that insofar as the space
surrounding the molecule of interest is sampled appropriately,
addition of points in the periphery is superfluous.32,39 In fact,
since the number of points lying close to the van der Waals
envelope is small compared to the total number of points
forming the grid, any additional point far from the nuclei will
contribute to the reproduction of low-order moments, modulating
the short-range effects of higher order contributions that are best
described in the vicinity of the molecule. For this reason, points
found at distances from the nucleus exceeding three times the

van der Waals radius of the latter are discarded arbitrarily.35,40

It has also been noted that an envelope separated by 0.1 Å for
concentrical layers and a grid step of 0.5 Å for Cartesian grids41

were appropriate, smaller separations of the points leading to
comparable derived point charges.39 Moreover, the envelope
beyond which the electrostatic potential is computed has been
oversized by doubling each van der Waals radius to ensure that
contamination ofV (r k)due to the penetration of the electron
clouds is negligible.40

These observations, mutatis mutandis, may be applied for the
derivation of fitted models of distributed polarizabilities. In
addition to penetration effects that alter the pure multipolar part
of the electrostatic potential, it is important to ascertain that
the polarizing chargeqk is not too close to the nuclei, where it
is likely to induce strong fields that entail nonnegligible
hyperpolarization contributions. Experience has shown that
doubling van der Waals radii, as was done for fitting point
charges to the electrostatic potential, safely circumvents this
problem.20 The issue of spatial extent and grid step requires,
however, more attention because the influence of a distant
polarizing charge on a highly polarizable molecule can be
appreciable. The strength of the PT method and that based on
the use of the TPEPs resides in their ability to generate rapidly
large grids of induction energies, the number of points being
virtually independent from the computational effort, in contrast
with the FP approach. Here, four different grids were constructed
for C6H6, employing distinct cutoff distances,rcut, beyond which
points are discarded and separations of the concentrical van der
Waals envelopes,∆r, viz. (i) rcut ) 5.4 Å, i.e., approximately
three times the van der Waals radius of carbon, and∆r ) 0.15
Å, (ii) rcut ) 5.4 Å and∆r ) 0.75 Å, (iii) rcut ) 9.0 Å and∆r
) 0.15 Å, and (iv)rcut ) 9.0 Å and∆r ) 0.75 Å, yielding,
respectively, 4368, 1044, 7224, and 1452 points. Furthermore,
two additional Cartesian grids of regularly spaced points along
thex, y, andz directions were built, using a grid step of 0.5 Å
and a cutoff distance corresponding to (i) three and (ii) five
times the van der Waals radius of the participating atoms, thus,
yielding, respectively, 4785 and 25999 points. For each grid,
induction energies were calculated from the TPEPs, although
the PT method could have been equally employed for that
purpose.

For all models of distributed polarizabilities reported herein,
the root-mean-square deviation (RMSD) between the reference,
QM induction energy,Uind,k, and that regenerated from the
models,Ũind,k, will be calculated by means of the following
expression:

together with the relative error, defined as

3. Results and Discussion

3.1. Effects of Geometry and Basis Set.As can be seen in
Table 1, the largest number of basis functions does not
necessarily ensure an optimal accord between the quantum
chemically calculated molecular dipole polarizabilities and the
experimentally determined ones. In fact, in the light of the
RMSD and the mean errors between the latter quantities, the
best results are obtained with the Sadlej basis set, which broadly

Rlκ,l′κ′ ) ∑
s,s′

∑
ls,κs

∑
ls′,κs′

Wlκ,l′κ′(r0 - r s) Rlsκs,ls′κs′
(r s, r s′)

Wl′κ′,lκ(r0 - r s′) (6)

RMSD ) { 1

Np
∑
k)1

Np

[Uind,k - Ũind,k]
2}1/2

(7)

∆ε ) 100× 1

Np
∑
k)1

Np

|
Uind,k - Ũind,k

Uind,k

| (8)
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corresponds to an intermediate between the costly ELP and the
less expensive Spackman basis sets.23 While the ELP and the
Sadlej basis sets give comparable molecular polarizabilities, the
latter should be preferred over the former on account of its lesser
cost. The Spackman basis set yields systematically underesti-
mated quantities, ca. 0.4 a.u., thus constituting a less appealing
choice for the computation of induction energies. Interestingly
enough, in a number of instances, geometries optimized using
the smaller 6-31G(d) basis set led to a better agreement between
the calculated and the experimental dipole polarizabilities.

The symptomatic case of anion HCOO- provides a glaring
example of the difficulties involved in the determination of the
polarizabilities of negatively charged species. The results
reported in Table 1 can, indeed, vary by more than 4 a.u.,
depending on the basis set employed. This example illustrates
the well-known necessity to include diffuse functions for the
treatment of anions or neutral molecules bearing lone pairs
extending far from the nuclei.42 On that point, the basis set of
Spackman is clearly inadequate and should be replaced by a
larger, more complete one.

As an additional test, the basis set of Sadlej was employed
subsequently to estimate the molecular dipole polarizabilities
of a larger set of molecules, viz. CH3CH2NO2, CH3CN, CH3F,
CH3OH, CH3SH, CO2, CH3COCH3, HCOCH3, HF, CH3-
COOCH3, CH3OCH3, CH3NH2, C6H5OH, and C5H5N. As can
be observed in Table 2, the general agreement between the
quantum chemically calculated quantities and the experimentally
determined ones (the RMSD between the quantum chemically
calculated and the experimentally determined molecular dipole
polarizabilities are equal to 1.16 and 0.61 a.u., respectively)
confirms that MP2/Sadlej constitutes an appropriate strategy for
modeling induction phenomena.

3.2. Alternative Schemes for Calculating Induction Ener-
gies.As mentioned previously, the bottleneck in the develop-
ment of full QM models of distributed polarizabilities fitted to
the induction energy is rooted in the tremendous cost involved
in the evaluation of the latter on large grids of points.19,20 In
this spirit, only the conception of a fast and reliable approach
for mapping the induction energy can guarantee the success of
such fitting procedures, readily usable in the design of non-
additive potential energy functions, as was the case for potential

TABLE 1: Molecular Dipole Polarizabilities a of Selected
Prototypical Molecules Using the ELP, the Sadlej, and the
Spackman Basis Sets in Conjunction with MP2/6-31G(d) and
MP2/6-311++G(2d,2p) Geometries

MP2/ELP MP2/Sadlej MP2/Spackman

DZPb TZPb DZP TZP DZP TZP

C2H2 R10,10 30.909 30.556 31.186 30.830 30.888 30.535
R11c,11c 18.938 18.814 18.708 18.572 16.925 16.837
R11s,11s 18.938 18.814 18.708 18.572 16.925 16.837
Rj 22.928 22.728 22.867 22.658 21.579 21.403

C2H4 R10,10 34.359 33.999 34.494 34.134 34.188 33.827
R11c,11c 22.631 22.537 22.559 22.464 21.468 21.396
R11s,11s 25.178 24.947 25.317 25.080 25.039 24.809
Rj 27.389 27.161 27.457 27.226 26.898 26.677

C2H6 R10,10 30.816 30.873 31.069 31.111 30.955 29.496
R11c,11c 27.046 27.062 27.247 27.252 27.067 26.124
R11s,11s 27.046 27.062 27.247 27.252 27.067 26.124
Rj 28.579 28.332 28.521 28.538 28.363 27.248

H2O R10,10 9.696 9.546 9.900 9.751 9.327 9.188
R11c,11c 9.654 9.574 9.622 9.542 9.104 9.042
R11s,11s 10.131 9.925 10.266 10.063 10.196 9.980
Rj 9.827 9.682 9.929 9.785 9.542 9.403

NH3 R10,10 13.687 13.508 13.886 13.710 13.638 13.445
R11c,11c 13.687 13.508 13.886 13.710 13.638 13.445
R11s,11s 15.574 15.519 15.757 15.695 14.983 14.912
Rj 14.316 14.178 14.510 14.372 14.086 13.934

C6H6 R10,10 45.342 45.234 45.287 45.171 43.015 42.922
R11c,11c 81.630 81.113 81.919 81.401 80.793 80.283
R11s,11s 81.630 81.113 81.919 81.401 80.793 80.283
Rj 69.534 69.153 69.708 69.324 68.230 67.829

HCOO- R10,10 37.614 36.922 37.245 36.551 33.735 33.019
R11c,11c 25.136 25.020 24.802 24.684 19.985 19.858
R11s,11s 42.719 42.613 42.199 42.080 37.203 36.988
Rj 35.156 34.852 34.749 34.438 30.308 29.955

H2S R10,10 23.201 23.085 24.399 24.260 23.800 23.668
R11c,11c 23.261 23.214 25.229 25.150 24.263 24.198
R11s,11s 23.733 23.435 24.576 24.274 24.766 24.448
Rj 23.398 23.245 24.735 24.561 24.276 24.105

HCN R10,10 22.488 22.144 22.700 22.359 21.863 21.537
R11c,11c 14.112 13.983 13.943 13.811 13.281 13.181
R11s,11s 14.112 13.983 13.943 13.811 13.281 13.181
Rj 16.904 16.703 16.862 16.660 16.142 15.966

HCOOH R10,10 16.506 16.391 16.503 16.388 30.888 15.477
R11c,11c 28.078 27.747 28.329 28.004 26.828 26.517
R11s,11s 23.989 23.687 24.024 23.725 23.725 23.426
R11s,11c 0.723 0.780 0.696 0.753 0.890 0.948
Rj 22.040 22.608 22.952 22.706 22.040 21.807

H2CO R10,10 22.408 22.106 22.583 22.283 21.323 21.069
R11c,11c 12.985 12.885 12.910 12.810 12.445 12.367
R11s,11s 17.923 17.787 17.926 17.789 17.206 17.072
Rj 17.772 17.593 17.806 17.593 17.001 16.833

H2CONH2 R10,10 20.745 20.641 20.791 20.686 19.934 19.854
R11c,11c 36.879 36.422 37.134 36.683 36.137 35.697
R11s,11s 27.878 27.584 27.987 27.696 27.345 27.053
R11s,11c -0.881 -0.859 -0.929 -0.911 -0.774 -0.756
R10,11c 0.166 0.169 0.175 0.178 0.220 0.221
Rj 28.501 28.355 28.637 28.355 27.805 27.535

RMSDc (a.u.) 1.27 1.13 1.12 1.05 1.12 1.40
∆h d 0.24 0.38 0.01 0.20 0.72 1.01

a All molecular dipole polarizabilities in atomic units (a.u.).b Geom-
etries optimized at the MP2/6-31G(d) (DZP) and at the MP2/6-
311++G(2d,2p) (TZP) levels of approximations.c Root-mean-square
deviation between the experimental45 and the QM estimates.d Mean
error between the experimental45 and the QM estimates.

TABLE 2: Molecular Dipole Polarizabilities a of Selected
Molecules at the MP2/Sadlej//MP2/6-311++G(2d,2p) Level
of Approximation

R10,10 R11c,11c R11s,11s Rj Rjexp
45

C2H2 30.830 18.572 18.572 22.658 22.47
C2H4 34.134 22.464 25.080 27.226 28.70
C2H6 31.111 27.252 27.252 28.538 30.17
H2O 9.751 9.542 10.063 9.785 9.79
NH3 13.710 13.710 15.695 14.372 15.25
C6H6 45.171 81.401 81.401 69.324 67.49
HCOO- 36.551 24.684 42.080 34.438 -
H2S 24.260 25.150 24.274 24.561 25.51
HCN 22.359 13.811 13.811 16.660 17.48
HCOOH 16.388 28.133 23.596 22.706 22.95
H2CO 22.283 12.810 17.789 17.593 16.53
H2CONH2 20.686 36.776 27.605 28.355 27.53
CH3CH2NO2 33.685 45.715 53.376 44.259 -
CH3CN 38.985 24.042 24.042 29.023 30.23
CH3F 17.798 16.226 16.226 16.750 20.04
CH3OH 19.775 20.258 23.095 21.043 22.41
CH3SH 33.819 33.523 42.641 36.661 -
CO2 28.287 12.967 12.967 18.074 19.65
CH3COCH3 33.700 45.123 46.374 41.732 43.12
HCOCH3 23.737 36.130 30.254 30.040 30.98
HF 6.401 5.295 5.295 5.664 5.40
CH3COOCH3 36.421 46.938 54.319 45.893 46.34
CH3OCH3 30.546 37.811 31.400 33.252 35.70
CH3NH2 23.953 24.796 28.325 25.691 27.06
C6H5OH 47.403 84.246 93.073 74.907 74.91
C5H5N 41.144 73.197 77.425 63.922 64.10
RMSDb (a.u.) 1.32
∆h c 0.04

a All molecular dipole polarizabilities in atomic units (a.u.). These
quantities correspond to the eigenvalues of the dipole polarizability
tensor.b Root-mean-square deviation between the experimental45 and
the QM estimates.c Mean error between the experimental45 and the
QM estimates.
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derived charges in pairwise, additive force fields. This explains
why alternative routes to the expensive FP have been sought
lately. In this section, the induction energies resulting from the
interaction of C2H6, C6H6, HCONH2, CH3OH, HCOOH, and
HCOO- with a nonpolarizable, polarizing charge, computed
using FP, the PT approach, and that based on the use of TPEPs,
are compared critically. Direct comparison of the induction
energies obtained from these three schemes is not possible
because of the difference in the levels of theory at which the
QM calculations were carried out. In particular, PT induction
energies result from an HF/Sadlej computation, whereas the
quantities derived from FP and from the TPEPs were evaluated
at the MP2/Sadlej level of approximation, albeit TPEPs could
have been obtained just as well from CPHF calculations. To
assess the performances of the PT approach, the induction
energies computed from eq 4 for neutral molecules should,
therefore, be scaled by an appropriate factor compensating for
the systematic underestimation ofUind,k. The case of anions is
far more problematic, as will be discussed below. The choice
of an adapted scaling factor is not obvious for two major reasons.
First, as has been commented on, scaling of the PT induction
energies depends radially on the location of the polarizing
charge,qk, from the nuclei. It has been observed that the scaling
factor decreases rapidly from the points near the molecule to
those lying far from it. In fact, the distribution ofUind,k(FP)/
Uind,k(PT) as a function ofr, the distance separating the center
of mass of the molecule from pointk of the grid, not too
unexpectedly exhibits a plateau whenr is sufficiently large. A
function, f (r), which consists of powers of 1/r, is proposed to
model the evolution of the scaling factor; other functional forms
were investigated but did not improve the description. The
second reason lies in the PT approach itself. Conceptually, it is
based upon an uncoupled form of the HF equations, thus,
providing always a lower bound of the reference, MP2/Sadlej
FP, induction energies. Interestingly enough, the Gaussian 98
suite of programs28 provides two distinct estimates of molecular
dipole polarizabilities: an “exact” one,Rexact, relying on the
derivative of the energy with respect to the electric field, and
an “approximate” one,RUCHF, obtained by means of the
uncoupled HF equations (UCHF). Consequently, it would be
natural to modelUind,k(FP)/Uind,k(PT) by the ratioRjexact/RjUCHF,
in which Rj denotes the trace of the molecular polarizability.
PT induction energies were, therefore, scaled by anr-dependent
factor, ú(r), defined by

wherea0 ) 0.82455,a1 ) 1.54964, anda2 ) -0.94522 are
parameters fitted to reproduce the evolution off (r) in a series
of small, prototypical molecules.

In Figures 1 and 2, the reference FP induction energies are
plotted against the quantities estimated from eqs 4 and 5.
Considering that raw PT induction energies depart nonuniformly
from the FP ones by up to ca. 40%, they were scaled using eq
9 for comparison purposes. It can be observed that, insofar as
neutral compounds are concerned, scaled PT induction energies
and those derived from TPEPs behave similarly. The error
relative to the reference FP quantities, i.e.,|Uind,k(FP)- Uind,k-
(PT/TPEP)|/Uind,k(FP), never exceeds 7.3% for the former and
6.2% for the latter. These errors clearly arise from distinct
origins. In the case of PT induction energies, deviation from
the reference FP quantities is rooted in the level of theory, viz.
uncoupled HF equations, in conjunction with an ad hoc,
empirical scaling. In contrast, the accuracy of the induction

energies derived from TPEPs is necessarily dependent on the
rank at which the expansion of eq 5 is truncated. It is worth
noting that scaling factorú(r) defined in eq 9 provides only an
average correction at a given value ofr. In reality, the dispersion
of Uind,k(FP)/Uind,k(PT) is the largest whenr is small, i.e., for
the few grid points close to the nuclei. This explains why the
error between scaled PT and FP induction energies, arising
mostly from these few points, remains, nonetheless, moderate.

The case of anion HCOO- is significantly more problematic,
and illustrates the difficulties of the PT approach to handle such
species. Here, an appropriate scaling factor is far more difficult
to seek due to the erratic behavior ofUind,k(FP)/Uind,k(PT) as a
function ofr, oscillating roughly between 0.5 and 3.5 (see Figure
3). The previously witnessed systematic underestimation of the
induction energy does not hold anymore for negatively charged
compounds. It is, therefore, extremely difficult to define an
average scaling factor in the spirit of eq 9, capable of correcting
the PT results on the sole basis of a radial dependence. Using
this equation, the error relative to the FP induction energies,
initially equal to 38.1%, is even increased. A closer examination
of Uind,k(FP)/Uind,k(PT) around HCOO- reveals a strong angular
dependence of this quantity, distributed symmetrically with
respect to the plane of the anion. It can be observed that
Uind,k(FP)/Uind,k(PT) g 1.0 only in a small solid angle about
the C2 axis of the anion. Clearly, scaling of the PT induction
energies is now a function of both the radial,æ, and the
azimuthal,θ, angles, in addition to the distance,r, separating
the center of mass of the anion from the points of the grid.
θ,æ-dependence can be introduced conveniently using the real

ú(r) )
Rjexact

RjUCHF
f (r) )

Rjexact

RjUCHF
(a0 +

a1

r
+

a2

r2) (9)

Figure 1. FP induction energies versus PT induction energies for all
the neutral chemical species.

Figure 2. FP induction energies versus induction energies derived from
TPEPs for all the neutral species.
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spherical harmonics,yl
m(θ, æ), the order of which is inherently

related to the symmetry of the anion, thereby making the
definition of a general scaling factor,ú(r, θ, æ) ) Rjexact/RjUCHF

f (r) ∑l,m cl
m yl

m(θ, æ) a cumbersome task, probably impossible
to accomplish. Here, in the particular case of anion HCOO-, it
can be shown thatl ) 2 real spherical harmonics should be
taken into account, while first-order ones,l ) 1, are extraneous.
It can be further seen thaty2

(1(θ, æ) andy2
-2(θ, æ) do not play

any role in the distribution ofUind,k(FP)/Uind,k(PT) around
HCOO-. As a result, the scaling factor for this anion can be
expressed as

where a0 ) 0.66143,a1 ) 6.79301,a2 ) -5.91835,c00 )
0.29592,c20 ) -0.11348, andc22 ) -0.19254 are parameters
optimized using a Levenberg-Marquardt fitting procedure.
Using eq 10, the error between the scaled PT and the reference
FP induction energies drops from 38.1 to 15.6%. Whereas the
improvement is significant, the inclusion of second-order real
spherical harmonics is evidently insufficient to ensure optimal
scaling. In sharp contrast, the induction energies evaluated using
the TPEPs turn out to be much closer to the target FP values,
viz. the error is ca. 9.7%, highlighting the obvious superiority
of the approach based on a topological analysis of the response
charge density for dealing with anions.

3.3. Effects of the Grid.Models of distributed polarizabilities
consisting of charge flow plus isotropic dipole polarizabilities
were determined subsequently by means of the SADP scheme.20

The choice of isotropic dipole polarizabilities is dictated by the
desire to construct compact models suitable for statistical
simulations and to avoid possible numerical instabilities19,20that
generally translate into flat or poorly defined distribution
functions,S (Rlκ,l′κ′

ss′ ). From these cost-effective models, molec-
ular dipole polarizabilities were regenerated using eq 6 and
confronted critically to the corresponding target MP2/Sadlej
values.

As can be observed in Table 3, the sensitivity of both the
distributed polarizabilities and the reproduced molecular quanti-
ties to the spatial extent of the grid points, i.e.,rcut, is appreciable.
Limiting the distribution of the points to approximately three
times the van der Waals radii of the participating atoms is clearly
not enough to guarantee a faithful description of the prevailing
molecular dipole component. The reason lies in the exaggerated

weight of the short-range, higher-order contributions that
modulate the reproduction of molecular dipole polarizabilities.
Depending upon the grid, discrepancies in the regenerated
molecular polarizabilities can attain ca. 10 a.u., with respect to
the reference MP2/Sadlej values. Such is the case, for instance,
of R1m,1m components, using the orthogonal, Cartesian grid of
4785 points. Whereas the latter would prove appropriate to
derive net atomic charges from the electrostatic potential and
reproduce not only the molecular dipole moment but higher-
order components as well, accurate representation of induction
phenomena requires that the space around the molecule be
sampled thoroughly over a sufficiently large radial extent from
the nuclei. This result is not totally surprising considering the
long-range nature of the interaction of a polarizing charge with
the molecule of interest.

Table 3 also suggests that the role played by the density of
grid points,∆r, on both the distributed polarizabilities and the
regenerated molecular quantities is very moderate. To ascertain
this observation, seven orthogonal Cartesian grids were con-
structed, using distinct densities, viz.∆r ) 0.50, 0.55, 0.65,
0.75, 1.00, 1.50, and 2.00 Å, corresponding to 25999, 19495,
11819, 7710, 3244, 966, and 407 points, respectively. As Table
3 confirms, the influence of∆r on the fitted polarizabilities is
only marginal. It can be noted that as the density of points
diminishes, so does the carbon-carbon charge flow polariz-
ability, R00,00

CC . At the same time, theR1m,1m components of the
dipole molecular polarizability decrease moderately from 86.246
to 85.790 a.u., thereby indicating that the choice of∆r is most
likely not as crucial as that ofrcut. Whereas in the case of the
FP methodology, the role of∆r governs the computational cost
involved in the mapping of the induction energy around the
molecule, this aspect is clearly of lesser concern for either the
PT approach or that based on the TPEPs.

3.4. Models of Distributed Polarizabilities.As has been seen
so far, the scaled PT approach and that relying upon the TPEPs
apparently provide comparable induction energies, at least for
neutral chemical species. This result stems from the statistical
analysis of the deviation,|Uind,k(FP) - Uind,k(PT/TPEP)|/
Uind,k(FP), which can be artificially small, considering that the
main source of error lies near the nuclei, and is essentially
concealed by the vast majority of points in the periphery, for
which the accord is much better (see Figure 1). Determination
of models of distributed polarizabilities and reconstruction of
molecular polarizabilities, directly comparable with the reference
MP2/Sadlej quantities, should prove the true worth of the two
alternative schemes for the computation of induction energies.
In this section, models of distributed polarizabilities consisting
of charge flow plus isotropic dipole polarizabilities were derived
for C2H6, C6H6, HCONH2, CH3OH, HCOOH, and HCOO-,
using large Cartesian grids of points for whichrcut corresponds
roughly to five times the van der Waals radii of the participating
atoms and∆r ) 0.5 Å, 21581, 25999, 19362, 19269, 19093,
and 19099 points, respectively.

The distributed polarizabilities computed from the SADP
procedure20 are reported in Table 4, together with the corre-
sponding molecular dipole polarizabilities derived using transla-
tion eq 6. From the onset, it can be observed that models of
atomic polarizabilities constructed from induction energies based
on TPEPs always yield smaller RMSDs and mean errors than
those obtained from the PT approach. Whereas establishing the
superiority of one scheme over the other cannot be done in the
sole light of this trend (both the RMSD and the mean error
reflecting the quality of the models and not the deviation from
hypothetically “exact” induction energies), it may, nonetheless,

Figure 3. FP induction energies versus PT/TPEPs induction energies
for HCOO-.

ú(r, θ, æ) )
Rjexact

RjUCHF
(a0 +

a1

r
+

a2

r2) ×

[c00 + c20(3cos2θ - 1) + c22sin2θ(cos2æ - sin2æ)] (10)
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be inferred that grids of induction energies mapped by means
of TPEPs probably contain fewer points corresponding to large
errors that could deteriorate globally the determination of
distributed polarizabilities. It should be remembered, indeed,
that for all neutral molecules, ther-dependent scaling factor
defined in eq 9 provides only an average correction of the PT
induction energies, neglecting possible angular dependencies.
The most striking difference between the two sets of models
lies in the systematic exaggeration of the atomic dipole
polarizabilities by the PT approach, while charge flow polar-
izabilities are conspicuously underestimated; the almost vanish-
ing R00,00

CH component in C6H6 is a glaring example of the
witnessed tendency. This conspicuous behavior is at the origin
of overestimated molecular dipole polarizabilities, suggesting
that a topological partitioning of the response charge density
supplies somewhat more reliable induction energies than does
the PT scheme.

The deficiencies characteristic of the latter approach are
magnified in the special case of anion HCOO-. In particular,
whereas componentR11c,11c of the molecular dipole polarizability
is reproduced accurately,R11s,11s andR10,10 are exaggerated by
ca. 15 and 6 a.u., respectively. Although the introduction of a
θ,æ-angular dependence in the scaling of PT induction energies
improved the model significantly, it should be acknowledged
that, at this stage, only the use of TPEPs can guarantee a faithful
description of polarization phenomena involving anions.

4. Conclusion

Aside from the computational cost overrun implied in
statistical simulations, one of the limitations to the generalized
use of polarizable potential energy functions lies in the difficulty
to design compact, nonheuristic models of distributed polariz-
abilities based on sophisticated QM calculations and capable
of accounting for through-space induction effects appropriately.
In essence, the main obstacle to the derivation of distributed
polarizabilities is the fast yet accurate computation of induction
energies to which the latter will be fitted. Preliminary attempts
to determine models of atomic polarizabilities based on FP
calculations emphasized that the applicability of this approach
was restrained to sufficiently small chemical species,19,20 on
account of the tremendous computational effort it involves, i.e.,
mapping the induction energy over a grid ofNp points requires
Np separate calculations. At this point, earlier studies illuminated
the preponderant role of the basis set in the faithful reproduction
of experimental molecular dipole polarizabilities,27 suggesting
that only the use of large and flexible basis sets can guarantee
reliable results. Careful examination of the behavior of the
ELP,24 the Sadlej,25 and the Spackman26 basis sets led to the
conclusion that the second offers the best possible compromise
in terms of accuracy and computational investment. Whereas
the geometries optimized at the MP2/6-311++G(2d,2p) level
of approximations yield molecular dipole polarizabilities in

TABLE 3: Effects of the Grid Definition on the Distributed Polarizabilities a,b and the Regenerated Molecular Dipole
Polarizabilitiesb of C6H6 at the MP2/Sadlej//MP2/6-311++G(2d,2p) Level of Approximation

vdW envelopes

rcut

∆r
5.5 Å
0.15 Å

5.5 Å
0.75 Å

7.5 Å
0.15 Å

7.5 Å
0.75 Å MP2/Sadlej

R00, 00
CC -1.793 -1.765 -1.675 -1.679

R00,00
CH -0.511 -0.573 -0.564 -0.607

R1m,1m
CC 7.551 7.542 7.484 7.487

RMSD (10-3 a.u.) 0.374 0.523 0.338 0.490
∆ε (%) 3.16 3.73 2.94 3.50
R10,10 45.308 45.253 44.906 44.920 45.171
R11c,11c 89.154 89.279 89.934 87.576 81.401
R11s,11s 89.154 89.279 89.934 87.576 81.401

Cartesian grid

rcut

∆r
3.0× RvdW

0.50 Å
5.0× RvdW

0.50 Å
5.0× RvdW

0.55 Å
5.0× RvdW

0.65 Å MP2/Sadlej

R00,00
CC -1.722 -1.614 -1.614 -1.626

R00,00
CH -0.602 -0.524 -0.523 -0.504

R1m,1m
CC 7.982 7.666 7.666 7.658

RMSD (10-3 a.u.) 0.242 0.184 0.189 0.188
∆ε (%) 2.66 2.14 2.14 2.12
R10,10 47.894 45.996 45.995 45.945 45.171
R11c,11c 91.373 86.246 86.253 86.211 81.401
R11s,11s 91.373 86.246 86.253 86.211 81.401

Cartesian grid

rcut

∆r
5.0× RvdW

0.75 Å
5.0× RvdW

1.00 Å
5.0× RvdW

1.50 Å
5.0× RvdW

2.00 Å MP2/Sadlej

R00,00
CC -1.677 -1.582 -1.583 -1.527

R00,00
CH -0.514 -0.549 -0.558 -0.636

R1m,1m
CC 7.664 7.685 7.659 7.658

RMSD (10-3 a.u.) 0.187 0.185 0.190 0.192
∆ε (%) 2.12 2.12 2.11 2.09
R10,10 45.986 46.111 45.955 45.949 45.171
R11c,11c 86.191 86.021 86.003 85.790 81.401
R11s,11s 86.191 86.021 86.003 85.790 81.401

a Models of distributed polarizabilities include charge flow plus isotropic dipole polarizabilities.b All molecular dipole polarizabilities in atomic
units (a.u.).
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excellent agreement with experiment, it has been observed that
those obtained with the smaller 6-31G(d) basis set could lead
to equally remarkable results.

Even at the MP2/Sadlej level of theory, FP calculations are
still too expensive, thus making it necessary to search for swift,
inexpensive methods to compute induction energies and to
derive distributed polarizabilities. With this objective in mind,
two alternatives were examined, one relying upon second-order
perturbation theory and an uncoupled form of the perturbed HF
equations,21,22 the other upon a topological analysis of the
response charge density,12,23 in the spirit of Bader’s theory of
“atoms in molecules”.13 The presdent contribution analyzes
critically these alternatives and proposes a series of guidelines
and recommendations for the design of models of distributed
polarizabilities.

Based on a single QM calculation, both the PT approach and
that making use of the TPEPs supply induction energies of

comparable quality in terms of error with respect to the reference
FP values for all neutral molecules. Because the PT scheme
described here makes use of an uncoupled form of the HF
equations,43 scaling of the induction energies by means of an
appropriately parameterized,r-dependent function is necessary
to compare with the MP2/Sadlej quantities. The main advantage
of this method resides in its simplicity of implementation and
the very low computational effort it implies, the single QM
computation being performed at the HF level of approximation.
This also constitutes the weakness of the approach, considering
that an appropriate scaling is necessary to yield values of MP2/
Sadlej quality, a key requirement that appears to be impossible
to fulfill completely in the special case of anions, even by
increasing the complexity of the scaling function through an
angular dependence. In contrast, the method relying on a
relocalization of the TPEPs, although more complex in its
implementation and more computationally demanding on ac-

TABLE 4: Models of Charge Flow Plus Isotropic Dipole Polarizabilitiesa and the Regenerated Molecular Dipole
Polarizabilitiesa for a Series of Small Prototypical Molecules at the MP2/Sadlej//MP2/6-311++G(2d,2p) Level of Approximation

distributed polarizabilities molecular polarizabilities

PT TPEPs PT TPEPs MP2/Sadlej

C2H6 R00,00
C1C2 -0.267 -1.714 R10,10 28.740 33.612 31.111

R00,00
C1H1 -0.493 -1.279 R11c,11c 30.359 29.294 27.252

R1m,1m
CiCi 12.435 7.520 R11s,11s 30.359 29.294 27.252

RMSD (10-3 a.u.) 0.319 0.119
∆ε (%) 5.33 3.03

C6H6 R00,00
C1C2 -1.252 -1.614 R10,10 52.638 45.996 45.171

R00,00
CiHi -0.269 -1.614 R11c,11c 82.146 86.246 81.401

R1m,1m
CiCi 8.773 7.666 R11s,11s 82.146 86.246 81.401

RMSD (10-3 a.u.) 0.299 0.184
∆ε (%) 4.10 2.14

HCONH2 R00,00
CH -0.516 -0.760 R10,10 25.051 21.235 20.686

R00,00
CO -1.491 -1.915 R11c,11c 35.887 37.965 36.683

R00,00
CN -0.711 -1.566 R11s,11s 31.884 30.112 27.696

R00,00
NH -0.408 -0.262 R10,11c -0.072 0.099 0.178

R1m,1m
CC 7.243 6.013 R11s,11c -2.548 -1.167 -0.911

R1m,1m
NN 6.582 4.806

R1m,1m
OO 11.197 10.395

RMSD (10-3 a.u.) 0.214 0.139
∆ε (%) 5.15 2.48

CH3OH R00,00
CH1 -0.791 -0.960 R10,10 23.142 21.076 19.775

R00,00
CH2,3 -0.939 -1.213 R11c,11c 25.103 22.421 20.258

R00,00
CO -0.697 -1.158 R11s,11s 24.579 24.684 23.095

R00,00
OH -0.890 -0.828 R11s,11c 0.449 0.198 0.530

R1m,1m
CC 11.632 8.944

R1m,1m
OO 6.229 5.262

RMSD (10-3 a.u.) 0.201 0.173
∆ε (%) 5.76 4.06

HCOOH R00,00
CH -0.557 -0.880 R10,10 19.879 16.922 16.388

R00,00
CO1 -1.242 -1.294 R11c,11c 28.719 28.575 28.004

R00,00
CO2 -0.575 -1.212 R11s,11s 25.824 25.568 23.725

R00,00
O2H -0.669 -0.588 R11s,11c -1.343 0.281 0.753

R1m,1m
CC 6.309 5.114

R1m,1m
O1O1 6.744 5.704

R1m,1m
O2O2 6.826 6.105

RMSD (10-3 a.u.) 0.159 0.087
∆ε (%) 4.89 2.22

HCOO- R00,00
CH -2.477 -2.201 R10,10 42.598 38.900 36.551

R00,00
CO -3.581 -2.104 R11c,11c 24.208 24.732 24.684

R1m,1m
CC 4.936 10.459 R11s,11s 57.564 44.321 42.080

R1m,1m
OO 8.551 7.134

RMSD (10-3 a.u.) 0.502 0.265
∆ε (%) 19.33 2.70

a All molecular dipole polarizabilities in atomic units (a.u.).
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count of the integration of the electron density over atomic
domains, proves to be more rigorous as it does not call for any
a posteriori adjustment of the determined quantities.

Among the recommendations for designing models of dis-
tributed polarizabilities, an important issue concerns the defini-
tion of the grid over which the induction energy is mapped. In
light of a thorough analysis, using distinct spatial extent,rcut,
and separation of first-neighbor points,∆r, it was found that
increasing the density is not as pivotal as sampling the space
surrounding the molecule sufficiently far from the nuclei. The
choice ofrcut corresponding to approximately five times the van
der Waals radius of the participating atoms proved to yield a
reliable reproduction of the molecular dipole polarizabilities.
Finally, a critical test for probing the induction energies
evaluated using the PT approach and an approach that relies
upon a partitioning of the response charge density consists of
computing the distributed polarizabilities from which molecular
quantities can be regenerated and confronted to the correspond-
ing experimental estimates. For all neutral molecules, the derived
models of distributed polarizabilities unambiguously reflect the
higher quality of the induction energies calculated from the
TPEPs. The PT scheme, nevertheless, proved to provide
reasonable results and could thus constitute, on account of both
its ease of implementation and limited computational cost, a
very appealing alternative. Yet, the description of induction
phenomena involving anions illustrates the limitations of this
approach. Enhancements in the scaling of the induction energies
by means of an angular dependence partially alleviate the
deficiencies of the method, while not correcting them fully. In
sharp contrast, the approach based on a relocalization of the
TPEPs is robust and rigorous enough and should therefore be
preferred for handling negatively charged species.
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